Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits.
نویسندگان
چکیده
Many flagellar proteins are exported by a flagellum-specific export pathway. In an initial attempt to characterize the apparatus responsible for the process, we designed a simple assay to screen for mutants with export defects. Temperature-sensitive flagellar mutants of Salmonella typhimurium were grown at the permissive temperature (30 degrees C), shifted to the restrictive temperature (42 degrees C), and inspected in a light microscope. With the exception of switch mutants, they were fully motile. Next, cells grown at the permissive temperature had their flagellar filaments removed by shearing before the cells were shifted to the restrictive temperature. Most mutants were able to regrow filaments. However, flhA, fliH, fliI, and fliN mutants showed no or greatly reduced regrowth, suggesting that the corresponding gene products are involved in the process of flagellum-specific export. We describe here the sequences of fliH, fliI, and the adjacent gene, fliJ; they encode proteins with deduced molecular masses of 25,782, 49,208, and 17,302 Da, respectively. The deduced sequence of FliI shows significant similarity to the catalytic beta subunit of the bacterial F0F1 ATPase and to the catalytic subunits of vacuolar and archaebacterial ATPases; except for limited similarity in the motifs that constitute the nucleotide-binding or catalytic site, it appears unrelated to the E1E2 class of ATPases, to other proteins that mediate protein export, or to a variety of other ATP-utilizing enzymes. We hypothesize that FliI is either the catalytic subunit of a protein translocase for flagellum-specific export or a proton translocase involved in local circuits at the flagellum.
منابع مشابه
Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens.
FliI is a Salmonella typhimurium protein that is needed for flagellar assembly and may be involved in a specialized protein export pathway that proceeds without signal peptide cleavage. FliI shows extensive sequence similarity to the catalytic beta subunit of the F0F1 ATPase (A. P. Volger, M. Homma, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 173:3564-3572, 1991). It is even more similar to ...
متن کاملStructural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits.
Construction of the bacterial flagellum in the cell exterior proceeds at its distal end by highly ordered self-assembly of many different component proteins, which are selectively exported through the central channel of the growing flagellum by the flagellar type III export apparatus. FliI is the ATPase of the export apparatus that drives the export process. Here we report the 2.4 A resolution ...
متن کاملIdentification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system.
Caulobacter crescentus is motile by virtue of a polar flagellum assembled during the predivisional stage of the cell cycle. Three mutant strains in which flagellar assembly was blocked at an early stage were isolated. The mutations in these strains mapped to an operon of two genes, fliI and fliJ, both of which are necessary for motility. fliI encodes a 50-kDa polypeptide whose sequence is close...
متن کاملIsolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium.
A flagellum of Salmonella typhimurium and Escherichia coli consists of three structural parts, a basal body, a hook, and a filament. Because the fliK mutants produce elongated hooks, called polyhooks, lacking filament portions, the fliK gene product has been believed to be involved in both the determination of hook length and the initiation of the filament assembly. In the present study, we iso...
متن کاملEvolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes.
Active transport across the vacuolar components of the eukaryotic endomembrane system is energized by a specific vacuolar H+-ATPase. The amino acid sequences of the 70- and 60-kDa subunits of the vacuolar H+-ATPase are approximately equal to 25% identical to the beta and alpha subunits, respectively, of the eubacterial-type F0F1-ATPases. We now report that the same vacuolar H+-ATPase subunits a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 173 11 شماره
صفحات -
تاریخ انتشار 1991